Isoperimetric inequalities for the least harmonic majorant of $\vert x\vert \sp p$
نویسندگان
چکیده
منابع مشابه
New L P Affine Isoperimetric Inequalities *
We prove new Lp affine isoperimetric inequalities for all p ∈ [−∞, 1). We establish, for all p 6= −n, a duality formula which shows that Lp affine surface area of a convex body K equals Ln2 p affine surface area of the polar body K◦.
متن کاملOptimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملIsoperimetric inequalities for nilpotent groups
We prove that every finitely generated nilpotent group of class c admits a polynomial isoperimetric function of degree c+1 and a linear upper bound on its filling length function. 1991 Mathematics Subject Classification: 20F05, 20F32, 57M07
متن کاملIsoperimetric inequalities for soluble groups
We approach the question of which soluble groups are automatic. We describe a class of nilpotent-by-abelian groups which need to be studied in order to answer this question. We show that the nilpotent-by-cyclic groups in this class have exponential isoperimetric inequality and so cannot be automatic.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1987
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1987-0869215-0